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EXACT SOLUTION OF THE ANTIPLANE CONTACT PROBLEM FOR FINITE CANONICAL DOMAINS* 

E.V. KOVALENKO, D.G. TARASOV and M.I. CHEBAKOV 

The exact solution of a mixed problem of elasticity theory concerning 
pure shear by a stamp (in general, deformable) of a cylindrical body 
that occupies a domain bounded in section by coordinate lines of an 
orthogonal curvilinear coordinate system in a plane whose Lame 
coefficients satisfy certain conditions, is obtained by constructing the 
closed solutions of integral equations of the first kind that contain 
Jacobi elliptic functions as kernels. Analogous problems were studied 
in 11, 2/, etc., in the special case of a strip and a ring. A scheme is 
proposed /l/ for constructing the exact solution of these problems by 
conformal mapping of the strip into a finite domain. 

Many contact problems for bodies of finite size and periodic mixed problems /3, 4/ can 
be reduced to the integral equations under consideration. It is mentioned in /3/ that the 
integral operators of the equations obtained here can be inverted exactly by solving certain 
Riemann boundary-value problems for automorphic functions /5/. 

1. Formulation of the problem. Consider a cylindrical body described in the coordinates 

a, BY 2 (a and p are curvilinear orthogonal coordinates in a plane) by the relationships 
IaI,(.R,B,,<B~<Bz,--00Cz<w. Let a stamp be clamped rigidly at the face. fl = B, in the 
domain ju I<,<<( and move along the positive direction of the z-axis by under the action 
of a force 2' applied to each unit of its length; the face p = B, is clamped, while the faces 
fal=R are clamped (problem A) or stress-free (problem B). Mathematically, the problem 
reduces to integration of the Lame equation in coordinates a, p for the displacement w 

along the z axis 

where H, = H, (a, B), Hb = HP (a, fi) are Lame coefficients of the curvilinear coordinates 
with the boundary conditions 

w = 0 (fi = B,) 

w-0 (IaI=R) (problem A) 

r,, = H,-lBw/Ba = 0 ( 1 a 1 = R) (problem B) 

UJ = D (a) (B = B,, Ia IG-4) 
qz = Hfi-‘c3w@3 (fi = B,, A < / 01 1 Q R) 

(1.1) 

(1.2) 

Here D (a) is the given displacement of the stamp as a function of a. 
Following the method of separation of variables and setting w (a, B) = X WY(B), we 

obtain 
hp,X"iX + X'iXdh&3a = --Ih,,Y”lY + Y’lYdh,@l@31 

Hence it follows that the variables in (1.1) are separated if one of the conditions 

ah&h = 0 

ah,,/ag = 0 

(1.3) 

(I.$) 

is satisfied. 
It is then best to replace (a, p, z) by (g, n, z), which follows for condition (1.3) from 

the satisfaction of the relation 

aI@ = ah,$lafJ (1.5) 

and for condition (1.4), from the equality 
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ala% = ahRaali3a (1.6) 

Taking account of the relations (1.3) and (1.5), we find 

(1.7) 

and taking account of relations (1.4) and (1.6) we can write 

As a result of 
to a boundary-value 

(6 (%) = D (a)): 
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% (4 = f 1 has (a, B) da, 11 (B) = $ (B - 4 (lJ3) 

~=jh,&,~)da, j! 6= f has(a,@da, y= -++B1) 
0 Cl 

these substitutions, the boundary-value problem (1.1) and (1.2) is reduced 
problem in the coordinates %, n, z for the new function u(%,n) =~(a, p) 

Au = 0, A = dV8%= + Plan2 (1.9) 

ZJ (5911) = 0 (9 = 0) 

u(%,n) = 0 ( I E I = 6) (problem A) 

au(%,n)/a% = 0 ( 1% 1 = 6) (problem B) 

u (E, 11) = 6 (5) (11 = Y, 1% I< 1) 

au (5, qwl = 0 (11 = v, 1 < I 5 I Q a) 

2. Construction of solutions of the boundary-value problems (1.9). Using the Fourier 
series representation of the solutions we reduce problems A and B to finding a function cp (E) 
from the integral equation 

~[l(s+%)+l(r-_j)lrp(r)dr=6(%) @<%,<I) (2.1) 

which is connected in the cases (1.3) and (1.5) with the contact stresses under the stamp by 
the relation 

'p (%) = aH,G-‘r,q, (a, I?,) (2.2) 

and in the cases (1.4) and (1.6) by the expression 

cp (5) = eHi&rrpz (a, R,) (2.3) 

The kernel Z(y) can be represented in the form 

“7 tgi Y 
z(Y)=C,+$~~COShliy 

k=* 
kn 

C,==O, hh. =y$ (problem A), Co= &, h,.==T (problem B) 

(2.4) 

The series (2.4) can be summed by using expansions of the Jacobi elliptic functions in 
the parameter p = exp [--nK'(k)iK(k)~ /6/ where k is the modulus of the elliptic functions, K(k) 
is the complete elliptic integral of the second kind, and 

.We will have (x = K(k)@‘) 
If' (k) = K (l/l - k"). 

Here sny, cny, dny are Jacobi elliptic functions of modulus k, determined from the 
transcendental equation 

Z(y)=&In * (problem A) 

(problem B) 

(2.5) 
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K’ (k):‘K (k) =2 y,6 

Later problem A will be examined, while the expressions for problem B can be obtained 
by replacing cn Y and dny by dny and cn Y, respectively. 

Differentiating (2.1) with respect to 5 we obtain (1'(Y) = k(y)) 

\,k(x-15)-t k(s-E)]cp(x)d_r=6’(%) (O<E<l) 
0 

I; (Y) ~- dn xy/sn xy 

(25) 

Using the evenness of the function 'p (E) and the relationship /7/ between the Jacobi 
functions, we convert the integral Eqs.(2.6) to an equation with a Cauchy kernel by using the 
change of variables e = snxElsnx, 5 = snxrlsnx 

5 gs+- t nlli (E) (1 E I< ‘1) (2.7) 
--L 

g (5) = 'p (.z)idn XX, 21, (E) = 6' (Q/dn xg (2.8) 

whose solution is known /0/ and has the form 

Taking (2.8) into account, we obtain 

(2.9) 

The quantity No is determined by substituting the solution (2.10) into (2.1). 

3. Absolutely rigid stamp. If it is assumed that s(a) = 6 = const, then (2.10) is 
simplified and the value of the constant No can be written in the explicit form 

(2.10) 

(3.1) 

As 15 )-+I the solution (3.1) found has a root singularity with the coefficient 

When the side boundary a==H tends to infinity, k-+ 1, the elliptic functions change 
into hyperbolic functions sn Y+ thy; cny, dn y-tsech y, but x--t n (Ly)-'. We hence obtain the 
well-known solution of the contract problem of the shear of a "layer" /9/. 

The contact stresses under the stamp ZR: are determined by means of (2.2) or (2.3), 
taking the change of variables (1.7) or (1.8), respectively, into account. The connection 
between the shearing force T acting on the stamp and its displacement 6 is here given by the 
expression 

(:x2) 

where a(E) = a% in conformity with (1.7), while the function a(:) in the case (1.8) is 
found as the solution of the differential equation dald% = ah?% (a, p). 

In the cases of rectangular, as well as bipolar, elliptic, parabolic, and hyperbolic 
coordinates, the Lame coefficients are identical and, therefore the changes of variables (1.7) 
and (1.8) are linear. 

In particular, for the rectangular coordinates (a == z, p = y) 

H,=HR=l, q, (a, B,) = Gq (5) , T = GN, s K’ (cn x) 

For bipolar coordinates (q is half the distance between the poles) 
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= H, I+ (a, B,) = -$ q (+) 

while the quantity T is determined from (3.2). 
For polar coordinates (a = cp, p = r) we can write 

H,=fi, Hp= I, & (haa)= 0, E(a)= -$,q@) = f In &, n = A, 

6 = $, y = $ In+, Zfi*(U,B,) = --g 'p i$) 

The force T has the form (3.2). 

Remarks. Let us find the connection between the constants X0 in (3.1) and 

P= 
i P (2) dr (3.3) 
-1 

Substituting the second formula of (3.1) into (3.3), we obtain 

P = zn-w,x-1 sn x K’ (cn x) (3.4) 

When the right-hand side of the original integral Eq.(2.1) differs from a constant, it 
is best to use Theorem 3.7 in /9/ to determine the constant N, in the solution (2.10). Taking 
account of the relationships (3.1), (3.2) and (3.4), we will have 

1 
x 

P=w s 
a(~)dn XT 
B(r)de (3.2) 

-1 

Using the method presented in Sect.2, the odd modification of the integral Eq.(2.1) can 
be investigated (with Z(zf5) replaced by l(z.e)). Without giving the details, we write 

1 
xonxE 

P (5) = - 7 s 
8'(Qdnx~e(r) dr 
snxr-ssnxf 

-1 

This result has no physical meaning but often turns out to be useful in combination with 
(2.10), (3.1)-(3.5) for regularizing integral equations of the first kind of two-dimensional 
contact problems for domains bounded by the coordinate lines of certain systems of curvilinear 
coordinates in a plane /4/. 
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